变频器谐波干扰的形成及对策_直流试验装置_爱游戏app手机版下载官方-爱游戏手游官网首页
爱游戏手游官网 +

爱游戏手游官网

变频器谐波干扰的形成及对策

  是利用电力电子半导体器件的通断作用将工频电源变换为另一频率的电能的控制装置。利用拖动电动机,起动电流小,能轻松实现软起动和大范围的无级调速,方便地对电机转速来控制,使得电动机的运行符合实际工况需求,节约能源的效果显著,因而变频器在工业生产里得到了愈来愈普遍的应用。变频器属于电力电子装置,构成它的电子元器件、计算机芯片、数字电路等均易受外界的电磁干扰(EMI),因此,变频器投入电网后,应的抗干扰设计技术(即

  电磁兼容EMC(Electro Magnetic Compatibility)是指电气设备或系统在所处的电磁环境中可靠的发挥其功能,并对该环境中的别的设备或系统不产生不允许的干扰的能力。简单说,也就是变频器投入运行之后,既要防止外界干扰它,也要防止它干扰外界。

  在交流电网中,由于许多非线性负载的电气设备的投入运行,其电压、电流波形实际上已经是在不同程度有所畸变的非正弦波。畸变的非正弦波通常是周期性电气分量,依据傅里叶级数分析,可分解成基波分量和基波量整数倍的谐波分量。而变频器的整流器一般都会采用三相桥式晶闸管整流电路,当变频器接入已发生畸变的交流电网,只要电源侧有非线性引起的谐波,输出侧通常就含有高次谐波干扰电网。

  变频器的整流桥和晶闸管逆变电路对于电网来讲就是非线性负载,在逆变输出回路中,输出电流信号是受PWM 载波信号调制的脉冲波形,这样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波的信号,这些谐波除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。

  它们以各种方式将自己的能量传播出去,形成对变频器本身以及电力系统中的别的设备的干扰信号。

  谐波电流和谐波电压的产生,对公用电网是一种污染,它使得系统内用电设备的使用条件恶化,对其工作性能和寿命产生不利影响;对系统内通信系统及电子设备产生干扰,容易干扰通信线路并导致电子设备发生故障。

  1)变压器电流谐波将增加铜损,谐波电压将增加铁损,其综合结果就是使得变压器的温度上升。谐波还可能会导致变压器绕组及线间电容之间的共振,由此产生噪声污染。

  2)变频器当变频器输入电压发生畸变,输入电流峰值增大,就使得变频器整流二极管及电解电容负担加重,易产生过电压或者过电流,导致变频器的运行不正常。由于变频器属于电力电子装置,很容易感受谐波失真而误动作,进而影响变频器的工作性能和使用寿命。

  3)电动机电机绕组存在杂散电容,谐波主要引起电动机的附加发热,导致电动机的额外温升,使得电动机的机械效率下降。谐波的产生还会引起绕组不均匀处过热导致的绝缘层损坏、电机转矩脉冲及噪声的增加。

  4)供电线路高频谐波电流使线路阻抗随频率的增加而提高,对供电线路产生了附加谐波损耗,造成电能的浪费,并且导体对高频谐波电流的集肤效应使线路的等效阻抗增加,导致线路压降增大,输出电缆的截面要相应增大。

  5)电力电容器工频状态下,电力系统装设的电容器比系统中的感抗要大得多。但在谐波频率较高时,感抗值成倍增加而容抗值大幅度减少,这就也许会出现谐振,谐振造成异常电流进入电容器,导致电容器过热,绝缘破坏直至烧毁。

  一般来说,形成电磁干扰(EMI)一定要具有三个要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。

  变频器产生的谐波功率较大,高次谐波的含量丰富,是典型的具有较强干扰性的电磁干扰源。电网中的电力变压器、变频器、电力电容器、电力电子设备、开关、保护电器、照明设备等都是对电磁干扰比较敏感的设备。由于变频器能产生较大功率的谐波,其干扰途径与一般电磁干扰的途径一致,主要分以下几种方式。

  1)电路耦合(传导)方式即通过电网传播。由于输入电流为非正弦波,当变频器的容量足够大时,使电网电压产生一定的畸变,影响别的设备正常工作,同时,输出端产生的传导干扰使直接驱动的电机的损耗大幅度的增加,影响电机的运转特性。这也是变频器输入电流干扰信号的主要传播方式。

  2)感应耦合方式当变频器的输入电路或输出电路与别的设备靠近时,变频器的高次谐波信号可能通过感应的方式耦合到别的设备中去,造成一定的谐波干扰。电流和电压干扰信号分别通过电磁感应和静电感应的方式耦合。

  3)辐射方式主要以电磁波方式向外辐射,对别的设备造成干扰。这是功率较大且频率很高的谐波分量的主要传播方式。

  为了防止干扰,总的原则是抑制和消除干扰源,切断干扰对系统的耦合通道,降低系统对干扰信号的敏感性。在实际工程中,采取的措施主要有两大类,一是在电网系统中采取了适当的措施抑制或消除谐波,二是对变频装置本身做改造,使其尽量少产生谐波。

  1)干扰隔离是指从电路上把干扰源和易受干扰的部分隔离开来,实际工程中,通常在电源和变频器之间是加装隔离变压器以避免传导干扰。隔离变压器一般都会采用Dyn接线组别的三相变压器,负荷侧的谐波电流在变压器的“角形”绕组中循环,不至流入电网。

  2)屏蔽接地电气装置为避免其内、外部的电磁感应或静电感应的干扰而对屏蔽体进行接地,称为屏蔽接地。按照功能划分,一般有以下几种:

  (1)静电屏蔽的接地目的是为了把金属屏蔽体上的感应静电干扰信号直接导入地中,同时减少分布电容的寄生耦合,保证人身安全。接地是消除导体上静电的一种有效办法,简单可靠,费用低。

  通常变频器用自身的机壳屏蔽,能减少电磁干扰,考虑到附属设备较多,线路复杂,宜设置专门的变频柜,对变频柜做可靠接地。这样既能屏蔽交流调速系统向外辐射能量,又能防止外界电磁干扰。

  3)合理布线通过对电气线路的合理布置,能有效削减通过感应方式传播的干扰信号。应用中须注意电气设备的电源和信号线应和变频器的输入和输出线保持充足间距;此外,变频器信号线应采用双芯屏蔽型,并要求信号线尽量短。信号线一般都会采用钢管屏蔽。

  1)滤波器在电磁兼容设计中常用的是低通高阻滤波器。它在低频时与电路串联的阻抗很低,与电路并联的阻抗很高;在高频时阻带范围串联阻抗高,而并联阻抗很小。滤波器大多数都用在抑制变频器产生的电磁干扰噪声的传导,也能抑制外界的电磁干扰以及瞬时冲击、浪涌电流对变频器的干扰。

  线路滤波器串联在变频器输入侧,由电感线圈组成,通过增大电路的阻抗减小高频率的谐波电流。辐射滤波器并联在电源与变频器输入侧,由高频电容器组成,能吸收频率较高具有辐射能量的谐波成分,用于降低无线电噪声。

  输出滤波器串联在变频器输出侧,由电感线圈组成,能够大大减少输出电流中的高次谐波成分,抑制变频器输出侧的浪涌电压,同时能减小电动机有高频谐波电流时引起的附加转矩。

  2)电抗器在电路中串入电抗器是抑制较低频率谐波电流的有效方式。依据接线位置的不同,主要分交流电抗器和直流电抗器两种。



上一篇:变频器怎么接线(变频器接线图详解)?

下一篇:第1讲变频器的安装及接线